Обзоры литературы

УДК: 612.82-019:612.018.2:[612.621.31+612.616.31+591.147.8-092.9](048.8)

О.В. Демидова, Б.Я. Рыжавский

ВЛИЯНИЕ ПОЛОВЫХ СТЕРОИДОВ НА РАЗВИТИЕ ГОЛОВНОГО МОЗГА

Дальневосточный государственный медицинский университ, 680000, ул. Муравьева-Амурского, 35, тел. 8-(4212)-32-63-93, e-mail: nauka@mail.fesmu.ru, г. Хабаровск

Резюме

Представлены данные литературы о влиянии половых гормонов на развитие разных отделов головного мозга человека и животных. Показано, что их действие непосредственно сказывается на морфометрических, гистохимических и биохимических характеристиках развития нейронов различных зон головного мозга. Направленность действия андрогенов и эстрогенов различна и зависит от пола, времени воздействия, продолжительности влияния повышенной концентрации половых гормонов или практически полного их отсутствия.

Ключевые слова: мозг, половые стероиды.

O.V. Demidova, B.Ya. Ryzhavskii

THE INFLUENCE OF SEXUAL STEROIDS ON BRAIN DEVELOPMENT

Far Eastern State Medical University, Khabarovsk

Summary

The review of literary data on influence of sexual hormones on development of different departments of a brain of the humans and animals is presented. It is shown that their action directly affects morphometric, histochemical and biochemical characteristics of development of neurons in various zones of a brain. The action direction of androgens and estrogen is various and depends on a gender, time of exposure, duration of influence of a high concentration of sexual hormones or practically their total absence.

Key words: brain, sexual steroids.

Взаимовлияния головного мозга (ГМ) и эндокринных желез в течение многих лет привлекает представителей нейронаук, врачей и биологов других специальностей. В последние десятилетия к данной проблематике исследователей привлекают данные о том, что целый ряд структур ГМ в пренатальном периоде онтогенеза обладают эндокринной функцией, с одной стороны, а также о том, что нейроны и глиоциты могут продуцировать стероидные гормоны - нейростероиды, с другой. Получено значительное число данных, свидетельствующих о наличии у клеток ГМ рецепторов к стероидным гормонам, в связи с чем ГМ рассматривается как их орган-мишень. Выраженное влияние, которое неодинаково в разные периоды жизни, на ГМ оказывают половые стероиды. С учетом этого настоящая статья посвящена рассмотрению влияния андрогенов и эстрогенов на морфофункциональное состояние ГМ [3, 7, 13, 14, 16].

Важным этапом изучения влияния половых гормонов на ГМ являлось установление программирующего

действия половых гормонов. Они, определяя нормальное развитие организма в целом, влияют на рост и развитие ГМ, контролируют половую дифференцировку его структур [3, 7, 12, 13, 26]. У млекопитающих, включая человека, женский фенотип развития ГМ определен генотипом и не нуждается в дополнительной гормональной «настройке», тогда как мужской – требует для реализации генотипа воздействия андрогенов в критический период половой дифференцировки [3, 7, 12, 13, 26, 43].

Половой диморфизм мозговых структур начинает формироваться в эмбриональном периоде с появлением рецепторов половых стероидов в гиппокампе [24], гипоталамусе и неокортексе [32] и повышением концентрации андрогенов [10]. Критический период, в течение которого стероиды влияют на развитие нейронных структур Γ М человека по мужскому или женскому типу, варьирует, по данным разных авторов, в пределах со второго триместра беременности до 3-месячного возраста [12]. У крыс эти процессы происходят

преимущественно в первые дни после рождения [13]. Одним из проявлений полового диморфизма у них является большая масса мозга у однодневных крыссамцов, чем таковая у самок [14].

Тестостерон действует на головной мозг плода, в частности, на центры гипоталамуса, определяющие выработку гонадотропинов. Гормон, подействовав на мозг, необратимо выключает циклические центры выработки гонадотропинов у самцов, а также стимулирует центры мужского поведения [1, 36]. Андрогены в нейронах половых центров под влиянием цитохром Р-450-ароматазы преобразуются в эстрогены, которые и осуществляют «настройку» этих центров по мужскому типу [43]. Именно эстрадиол играет ведущую роль в половой дифференциации мозга по мужскому типу [41]. Андрогены способны активировать гены, кодирующие синтез ароматазы в нейронах определенных ядер гипоталамуса, стимулировать процессы дифференцировки нейронов этих ядер и увеличивать здесь концентрацию эстрогенов [21]. В то же время, эстрогены, поступающие к плоду от матери, не вызывают подобные явления, так как их концентрация в крови плода не высока и они связаны с а-фетопротеином, что и предотвращает проявление у них маскулинизирующего эффекта [10]. Введение новорожденным самкам диэтилстильбэстрола, который не связывается с а-фетопротеином, приводит к увеличению преоптического ядра переднего гипоталамуса взрослых крыс [29]. Об этом свидетельствуют и результаты пространственного обучения взрослых крыс в водном лабиринте. В норме показатели у самцов в этом тесте лучше, чем у самок. После неонатального введения ингибиторов ароматазы эти показатели у них становились такими же, как у самок. Имплантация эстрадиола в кору неонатально кастрированных самцов вела к повышению их обучаемости в тесте Морриса [48]. Неонатальное системное воздействие на самок андрогенов также вело к улучшению их обучаемости [31].

В соответствии с этим, введение беременным крысам препаратов тестостерона вызывает увеличение массы мозга, его полушарий, толщины коры мозга, размеров ядер ее нейронов у их однодневного потомства [14]. Введение беременным самкам дегидроэпиандростерона влияет на показатели развития ГМ их потомства в 40-дневном возрасте. Его масса, толщина неокортекса в мозге у подопытных самцов была достоверно большей, чем в контроле, у самок имелась тенденция к увеличению. Морфометрические характеристики нейронов по-разному реагировали на введение. Так, у подопытных самок наблюдалось достоверное увеличение размеров нейронов слоя II в переднетеменной доле. В собственно теменной доле размеры нейронов были увеличены и в слое V. В мозге самцов изменения размеров этих клеток были меньшими: наблюдалось увеличение только размеров нейронов слоя V собственно теменной доли. Концентрация РНК была как у самцов, так и у самок снижена в цитоплазме нейронов в большинстве изученных зон коры мозга крыс подопытной группы. Подобные отклонения, рассматриваемые как свидетельство снижения синтетической активности клеток, могут быть обусловлены «приближением» мозга этих животных к завершению роста (в связи с его опережающими темпами), тогда как у контрольных он должен продолжаться более длительное время [15].

Через неделю после рождения в крови у мальчиков повышается концентрация тестостерона, достигая уровня, характерного для пубертатного периода. Высокая концентрация тестостерона держится 3 месяца, а затем начинает снижаться. Предполагают, что тестостерон в этот период продолжает «программировать» половую дифференцировку мозга. У девочек подъем содержания эстрогенов происходит в конце 2-й недели после рождения, он не такой высокий, как подъем уровня тестостерона у мальчиков, но продолжается дольше – приблизительно в течение года [7]. Высказываются предположения, что под влиянием тестостерона происходит задержка созревания нейронных систем в коре мозга, что позднее обеспечивает высокую пластичность. Вероятно, поэтому удаление височной доли у детенышей обезьян-самцов в дальнейшем не вызывает таких же значительных нарушений обучения, как v самок [19].

В ряде работ прослежена связь между уровнем тестостерона и использованием передних конечностей у животных и обнаружено его тормозное влияние на левое полушарие. Так, самки кошек и собак чаще оказывались правшами, тогда как самцы предпочитали использовать левую лапу [40], что свидетельствует об организующем влиянии тестостерона на использование передних лап у животных [47]. Период полового созревания длится у человека в среднем от 10-ти до 18ти лет [7]. В это время продукция половых гормонов в организме резко возрастает. Андрогены и эстрогены оказывают существенное влияние на формирование психического статуса, эмоций, памяти, поведения, интеллект [23]. Имеются их корреляции с гормональным статусом подростка. В частности показано, что у учеников разного пола, обучающихся в школе для одаренных детей, концентрация тестостерона в слюне ниже, чем у учащихся обычных школ [38].

Эстрогены регулируют плотность синапсов у взрослых крыс в гипоталамических вентромедиальных ядрах обоего пола [28]. Самцы крыс проявляют меньшую эстрогенвызванную зависимость синаптогенеза, даже когда они были обработаны при рождении ингибитором ароматазы [34]. Эстрогены действуют как антиоксиданты, ослабляя воздействие оксидативного стресса при дегенеративных процессах [3, 27, 30]. 17β- и 17а-эстрадиол компенсируют нарушение обучаемости при частичной хронической депривации холинэргических функций в ЦНС. 17β-эстрадиол in vitro уменьшает интенсивность гибели клеток-зерен мозжечка по механизмам апоптоза в условиях воздействия соединений ртути, в условиях окислительного стресса [20]. Воздействие эстрадиола в раннем возрасте стимулирует развитие дендритных шипиков, что ведет, в частности, к улучшению пространственного обучения и снижению тревожности [22]. Эстрогены оказывают влияние на память. Они улучшают процессы формирования энграммы долговременной памяти и закрепления полученной информации за счет увеличения плотности апикальных дендритов и количества синапсов в поле СА1 гиппокампа [35]. В культуре ткани гиппокампальной формации эстрадиол ускоряет интенсивность роста нейронов и темпы формирования аксонов, дендритов [18]. Отмечены тормозные эффекты эстрогенов на пространственную память (ориентацию) и положительное влияние на декларативную память [3]. У детей до 13-ти лет имеются незначительные половые различия в проявлении сложных психических процессов, у девочек восприятие учебного процесса происходит легче и быстрее; в пубертате юноши становятся лидерами в логическом и абстрактном мышлении [17]. В более старшем возрасте эти различия нивелируются [11].

У человека и экспериментальных животных у представителей мужского пола до полового созревания наблюдается больший объем ГМ. Относительный объем разных отделов ГМ также имеет гендерные отличия. Объем серого вещества отрицательно коррелирует с уровнем эстрадиола у девочек пубертатного возраста, и положительно коррелирует с уровнем тестостерона у мальчиков [39]. Относительный объем коры средней теменной доли, таламуса и базомедиальных диэнцефальных структур у представителей женского пола больше, чем у представителей мужского пола [44]. Признаками мужского пола являются большие размеры и выраженность асимметрии базолатерального ядра миндалины, ядра ложа концевой полоски, медиального преоптического ядра и переднегипоталамических третьего и четвертого интерстициальных ядер полового диморфизма, которые крупнее справа. Для женского пола характерно большее развитие вентромедиального ядра в переднем гипоталамусе [10]. Разница в размерах преоптического ядра гипоталамуса у мальчиков и девочек намечается в 4 года, становясь более определенной после 6-10-летнего возраста, и четко коррелируя с числом нейронов у взрослых мужчин и женщин [46].

Половые отличия в морфологии полушарий мозга достаточно выражены у взрослых людей и экспериментальных животных. Они проявляются, в частности, большей массой мозга у представителей мужского пола. Морфометрические исследования ГМ выявили большое число гендерных различий. Так, объем сексуально диморфного постериомедиального кортикального ядра примерно в 1,5 раза больше у самцов, чем у самок крыс и мышей. Величина, плотность расположения нейронов и общая площадь, занимаемая ими в медиальной амигдале, зависят от уровня андрогенов в раннем возрасте [2]. Обнаружены половые различия времени активации и количества гибнущих по механизмам апоптоза клеток в мозге крыс после рождения. В частности, показано большее количество гибнущих клеток у самок, что может быть важным механизмом, определяющим гендерные различия численности нейронов в ГМ [37]. Рецепторы андрогенов и эстрогенов включены в стероидзависимую регуляцию пластичности мозга. При этом связывание эстрадиола его рецепторами в коре мозга самцов крыс выше справа, а у самок - слева, уже с момента рождения [25]. Цитоархитектонические исследования свидетельствуют о наличии у мужчин и женщин ряда отличий в структурной организации лобной, височной областях коры и некоторых подкорковых образованиях ГМ [11, 50]. Так, в поле 24 передней лимбической области коры, в ассоциативном слое III как у мужчин, так и у женщин отмечается правополушарная доминантность величины ряда цитоархитектонических характеристик, причем в мозге женщин эта тенденция более четко выражена по сравнению с мозгом мужчин. В мозге женщин в правом полушарии больше средняя величина нейронов, их объемная фракция, а также процент крупных нейронов [5].

Размеры нейронов у женщин более вариабельны в ассоциативном слое III поля 39 в левом и правом полушариях. Меньший коэффициент асимметрии этого показателя коррелирует с тем, что женщины, в отличие от мужчин, наряду с левополушарным, чаще используют правополущарный способ обработки вербальной информации [6]. У женщин в речевых зонах височной доли и фронтальной коре выше плотность нейронов. У мужчин несколько больше объем теменной и фронтомедиальной коры, амигдалы и гипоталамуса по отношению к размерам всего мозга. Нижняя теменная доля у мужчин больше справа, у женщин – слева [10]. Асимметрия морфологических признаков в полушариях мозга больше выражена у мужчин, чем у женщин [50]. У самцов крыс справа [10] выявлена большая толщина задних участков коры и слоя гранулярных клеток гиппокампа [10], тогда как у самок наблюдается обратная тенденция. Ядро полового диморфизма у мужчин в 2,5 раза, а супрахиазмальное ядро в 2 раза больше, чем у женщин [45]. У гомосексуалистов поверхность супрахиазмального ядра в 1,7 раза больше, чем у гетеросексуальных мужчин [33]. В работе [49] при помощи ядерно-магнитного резонанса было показано, что у женщин объем переднего мозга меньше, чем у мужчин. Абсолютный объем мозолистого тела одинаков, хотя отношение объема мозолистого тела к объему переднего мозга у женщин больше, чем у мужчин. Тестостерон влияет на формирование межполушарных связей, введение его самкам крыс после рождения ведет к увеличению толщины мозолистого тела до величин, характерных для нормальных взрослых самцов. Ранняя овариоэктомия вызывает увеличение размеров мозолистого тела у взрослых самок, что говорит о феминизирующем влиянии гормонов яичников на мозолистое тело. В то же время, кастрация самцов в первый день жизни не вызывала существенной редукции мозолистого тела [10]. Резкое изменение концентрации половых стероидов, обусловленное гонадэктомией или введением производных тестостерона, отражается как у неполовозрелых, так и у молодых половозрелых крыс, на показателях развития неокортекса и гиппокампа, численной плотности нейронов, их морфометрических и гистохимических характеристик [8, 9].

Установленные морфологические гендерные различия мозга, по-видимому, могут в определенной степени обусловливать различия функционирования мозга, проявляющиеся, в частности, тем, что мужчины показывают лучшие результаты при пространственном ориентировании, выполнении заданий на вращение фигур, тогда как женщины лучше запоминают объекты и их локализацию, половые различияя при психопатологических состояниях, таких как депрессия, наблюдаемая более часто у женщин, агрессивность

и антисоциальное поведение, более характерных для мужчин [3, 42].

Выводы

Изложенные данные свидетельствуют о том, что как андрогены, так и эстрогены оказывают многогранное влияние на развитие и состояние разных отделов головного мозга. Это влияние не ограничено каким-то одним периодом онтогенеза и какой-то определенной зоной мозга. При этом они отражаются на функциональных, биохимических и морфологических показателях состояния нейронов. Особо следует подчеркнуть, что как эстрогены, так и андрогены влияют на свойства нейронов разных отделов органа, причем направленность и сила влияний на нейроны различных локализаций, разных зон коры и ее слоев зависят от

пола, возраста животного/человека, продолжительности действия избытка/недостатка гормона. Этот факт представляется принципиально важным, поскольку свойства мозга в значительной степени определяются именно характером межнейрональных взаимодействий, который может существенно меняться при неоднотипных изменениях нейронов, различающихся локализацией и функцией. В связи с этим, можно предполагать, что даже сравнительно небольшие морфофункциональные отклонения от нормы показателей состояния множества различных нейронов, происходящие при изменениях содержания половых гормонов, могут быть причиной изменений важных интегральных характеристик функционирования мозга в норме и при патологии.

Литература

- 1. Ахмерова Л.Г. Развитие клеток Лейдига // Успехи физиол. наук. 2006. Т. 37, № 1. С. 28–36.
- 2. Ахмадеев А.В., Калимуллина Л.Б. Дендроархитектоника нейронов заднего кортикального ядра миндалевидного тела мозга крысы под влиянием фактора пола и неонатальной андрогенизации // Морфология. 2004. Т. 125, № 2. С. 22–25.
- 3. Бабичев В.Н. Нейроэндокринный эффект половых гормонов // Успехи физиол. наук. -2005. Т. 36, № 1. С. 54–67.
- 4. Боголепова И.Н., Малофеева Л.И. Особенности строения некоторых корковых структур мозга у мужчин и женщин // Структурно-функциональные и нейрохимические закономерности асимметрии и пластичности мозга: материалы Всерос. конф. с междунар. участием. М., 2005. С. 63–66.
- 5. Боголепова И.Н., Малофеева Л.И. Индивидуальная вариабельности цитоархитектоники переднего лимбического поля 24 мозга человека // Морфология. -2007.- № 4.- C. 16-20.
- 6. Вольф Н.В. Половые различия функциональной организации процессов полушарной обработки речевой информации. Ростов-на-Дону: ЦВВР, 2000. 238 с.
- 7. Жуковский М.А. Детская эндокринология: руководство для врачей / М.А. Жуковский. М. : Медицина, 1995. 656 с.
- 8. Задворная О.В., Лебедько О.А., Рыжавский Б.Я. Влияние введения сустанона-250 самцам и самкам крыс в препубертатном периоде онтогенеза на показатели их развития и свободнорадикальное окисление в коре головного мозга // Дальневосточный медицинский журнал. 2010. № 2. С. 108–111.
- 9. Задворная О.В., Лебедько О.А., Учакина Р.В., Рыжавский Б.Я. Влияние гонадэктомии на морфометрические, биохимические и гистохимические показатели развития коры головного мозга крыс // Дальневосточный медицинский журнал. 2010. № 4. С. 111-114.
- 10. Моренков Э.Д., Петрова, Л.П. Нейроактивные стероиды и формирование полового диморфизма латеральной организации мозга // Руководство по функци-

- ональной межполушарной асимметрии. М.: Научный мир, 2009. С. 207–253.
- 11. Оржеховская Н.С. Половой диморфизм нейроглиальных соотношений в лобных полях мозга челове-ка // Морфология. -2005. -T. 127, № 1. -C. 7-9.
- 12. Резников А.Г. Прогестагены, беременность и здоровье плода // Гинекология. -2003. Т. 5, № 6. С. 260–262.
- 13. Резников А.Г. Перинатальная модификация развития нейроэндокринной системы: феномены и механизмы // Проблемы эндокринологии. -2004. Т. 50, № 4. С. 42-48.
- 14. Рыжавский Б.Я. Развитие головного мозга: отдаленные последствия влияния некомфортных условий. Изд. 3-е. Хабаровск: Изд-во ДВГМУ, 2009. 278 с.
- 15. Рыжавский Б.Я., Задворная О.В. Влияние введения дегидроэпиандростерона беременным самкам на показатели развития коры мозга их потомства // Дальневосточный медицинский журнал. 2012. N_2 2. С. 104-108.
- 16. Сапронов Н.С., Федотова Ю.О., Гончаров Н.П. Половые гормоны и поведенческие реакции // Вестник РАМН. -2001. -№ 12. -C. 29–34.
- 17. Сурнина О.Е., Лебедева Е.В. Исследования связанные с полом, особенностей реакции на движущийся объект у детей от 3 до 12 лет. В кн.: ХХХ Всеросийское совещание по проблемам высшей нервной деятельности, посвящ. 150-летию со дня рождения И.П. Павлова. СПб., 2000. Т. 1. С. 239—241.
- 18. Audesirk T., Cabell L., Kern M., Audesirk G. Betaestradiol influences differentiation of hippocampal neurons in vitro through an estrogen receptor-mediated process // Neuroscience. – 2003. – Vol. 121, № 4. – P. 927–934.
- 19. Bachevalier J., Hagger C.Sex differences in the development or learning abilities in ptimates # Psychoneuroendocrinol. 1991. Vol. 16. P. 177–188.
- 20. Behl C. Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-beta estradiol and induces the activity of the transcription factor NF-kappaB // J Neural Transm. -2000. Vol. 107, N 4. P. 393–407.

- 21. Beyer C., Hutchison J.B. Androgens stimulate the morphological maturation of embryonic hypothalamic aromatase-immunoreactive neurons in the mouse // Brain Res Dev Brain Res. 1997. Vol. 98, № 1. P. 74–81.
- 22. Bowman R.E., Ferguson D., Luine V.N. Effects of chronic restraint stress and estradiol on open field activity, spatial memory, and monoaminergic neurotransmitters in ovariectomized rats // Neuroscience. -2002. Vol. 113, N_2 2. P. 401–410.
- 23. De Kloet E.K. Hormones, Brain and Stress // Endocrine Regulations. 2003. Vol. 37. P. 51.
- 24. De Kloet E.K., Reul J.M., Sutanto W. Corticosteroids and the brain // J. of Ster. Biochem. and Molec. Biol. -1990. Vol. 37, N 3. P. 387–394.
- 25. Diamond M.C. Hormonal effects on the development of cerebral lateralization // Psychoneuroendocrynology. 1991. Vol. 16, № 1-3. P. 121–129.
- 26. Dohler K.D. Influence of hormones and hormone antagonists on sexual differentiation of the brain // Arch. Toxicol. Suppl. 1998. Vol. 20. P. 131–141.
- 27. Dubal D.B., Wilson M.T., Wise P.M. Estradiol: a protective and trophic factor in the brain // Alzheimer's Disease Review. 1999. Vol. 4. P. 1–9.
- 28. Frankfurt M., McEwen B.C. Estrogen increases axodendritic synapses in the VMN of rats after ovariectomy // Neuroreport. 1991. Vol. 2. P. 380–382.
- 29. Gorski R.A. Critical role for the medial preoptic area in the sexual differentiation of the brain // Prog. Brain Res. 1984. Vol. 61. P. 129–146.
- 30. Green P.S., Bishop J., Simpkins J.W. 17α -Estradiol exerts neuroprotective effects on SK-N-SH cells // J. Neurosci. 1997. Vol. 17. P. 511–515.
- 31. Joseph R., Hess S., Birecree E. Effects of hormone manipulations and exploration on sex differences in maze learning // Behav. Biol. 1978. Vol. 24, № 3. P. 364–377.
- 32. Kruijver F.P, Fernandez-Guasti A., Fodor M., et al. Sex differences in androgen receptors of the human mamillary bodies are related to endocrine status rather than to sexual orientation or transsexuaity // J. Clin. Endocrinol. Metab. − 2001. − Vol. 86, № 2. − P. 818–827.
- 33. LeVay S. A difference in hiphothalamic structure between heterosexual and homosexual man // Science. 1992. Vol. 253. P. 1034–1037.
- 34. Lewis D.W., Damond M.C. The influence of gonadal steroids on the asymmetry of the cerebral cortex // Brain Asymmetry. Eds.: R.U. Davidson, K. Hugdahl. Cambridge: MIT Press, 1998. P. 456–601.
- 35. Luine V.N., Richards S.T., Wu V.Y., et al. Estradiol enhances learning and memory in a spatial memory task and effects levels of monoaminergic neurotransmitters// Horm. Behav. 1998. Vol. 34, № 2. P. 149–162.
- 36. McCarthy M.M., Besmer H.R. Influence of maternal grooming, sex and age on Fos immunoreactivity in the preoptic area of neonatal rats: implications for sexuali differentation //Dev. Neurosci. 1997. Vol. 19, $N_{\rm P}$ 6. P. 557–560.

- 37. Nunez J.L., Lauschke D.M., Juraska J.M. Cell death in the development of the posterior cortex in male and female rats // J. Comp. Neurol. 2001. Vol. 436, No 1. P. 32–41.
- 38. Ostatnikova D., Dohnanyiova M., Mataseje A., et al. Salivary twstosterone and cognitive ability in children // Bratisl Lek Listy. -2000. Vol. 101, N $\!\!\!$ 8. P. 470–473.
- 39. Peper J.S., Brouwer R.M., H.G., et al. Schnack Sex steroids and brain structure in pubertal boys and girls // Psychoneuroendocrinology. − 2009. − Vol. 3, № 34. − P. 332–342.
- 40. Quaranta A., et al. Paw preference in dogs: relation between lateralized behavior and immunity // Behav. Brain Res. 2004. Vol. 153, № 2. P. 521-525.
- 41. Segovia S., Guillamon A., del Cevro M.C.R., Ortega E., et al. The development of brain sex differences: a multisignaling process // Behav. Brain. Res. − 1999. − Vol. 105, № 1. − P. 69–80.
- 42. Silverman I., Ragusa D.M. A short-term longitudinal study of the early development of self-regulation // J. Abnorm. Child. Psychol. -1992. Vol. 20, N_2 4. P. 415–435.
- 43. Simerly R.B. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain // Ann. Rev. Neurosci. 2002. Vol. 25. P. 507–536.
- 44. Sowell E.R., Thompson P.M., Rex D. et al. Mapping sulcal pattern asymmetry and local cortical surface gray matter distribution in vivo: maturation in perisylvian cortices // Cereb. Cortex. -2002. Vol. 12, N0 1. P. 17–26.
- 45. Swaab D.F., Fliers E., Partiman T.S. The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia // Brain Res. -1985. Vol. 342, N0 1. P. 37-44.
- 46. Swaab D.F., Hoffman M.A. Sexual differentiation of the human hypothalamus ontogeny of the sexually dimorphic nucleus of the preoptic area Dev. Brain Res. 1988. Vol. 44. P. 314–318.
- 47. Westergaard G.C., Chavanne T.J., et al. Biobehavioral correlates of hand preference in free-ranging female primates // Laterality. -2004. Vol. 9, N_{2} 3. P. 267–285.
- 48. Williams C.L., Meck W.H. The organizational effects of gonadal steroids on sexually dimorphic spatial ability // Psychoneuroendocrinology. -1991. Vol. 16, N1-3. P. 155–176.
- 49. Witelson S.F., Goldsmith C.H. The relationship of hand preference to anatomy of the corpus callosum in men // Brain Res. − 1991. − Vol. 545, № 1. − P. 175–182.
- 50. Witelson, S.F., Glezer J.J., Kigar D.L. Women Have Greaten Density of Neuron in Posterior Temporal // Neurosci. 1995. Vol. 15, № 5. P. 3418–3428.

Координаты для связи с авторами: Рыжавский Борис Яковлевич – доктор мед. наук, профессор, заведующий кафедрой гистологии ДВГМУ, тел.: 8-(4212)-32-63-93; Демидова Ольга Викторовна – кандидат биол. наук, преподаватель кафедры нормальной физиологии ДВГМУ, тел. 8-(4212)-32-63-93.