2020 год № 1
Внутренние болезниDOI:10.35177/1994-5191-2020-1-5-22
УДК 616.921.5
К.В. Жмеренецкий, Е.Н. Сазонова, Н.В. Воронина, Г.С. Томилка, О.А. Сенькевич, В.С. Гороховский, С.В. Дьяченко, И.П. Кольцов, М.Б. Куцый
COVID-19: Только научные факты
/div>
Дальневосточный государственный медицинский университет, 680000, ул. Муравьева-Амурского, 35, тел. 8-(4212)-30-53-11, e-mail: nauka@mail.fesmu.ru, г. Хабаровск
Контактная информация:
К.В. Жмеренецкий, e-mail: rec@mail.fesmu.ru
Резюме:
Представлен обзор научных публикаций по этиологии, эпидемиологии, патогенезу, клиническим проявлениям и лечению новой коронавирусной инфекции COVID-19. Проведен сравнительный анализ инфекции, вызванной вирусом SARS-CoV-2, с тяжелым острым респираторным синдромом (ТОРС/SARS), вызванным вирусом SARS-CoV, и Ближневосточным респираторным синдромом, вызванным вирусом MERS-CoV. Показаны эпидемиологические и клинические особенности COVID-19, связанные с высокой аффинностью вируса к молекуле ангиотензин-превращающего фермента 2-го типа в ткани легких человека.
Ключевые слова:COVID-19, коронавирус, респираторный дистресс-синдром
K.V. Zhmerenetsky, E.N. Sazonova, N.V.Voronina, G.S. Tomilka, O.A. Senkevich, V.S. Gorokhovskiy, S.V. Dyachenko, , I.P. Koltsov, M.B. Kutsiy
COVID-19: Scientific facts only
Far Eastern State Medical University, Khabarovsk
Summary:
The article presents a literature review of scientific publications on the etiology, epidemiology, pathogenesis, clinical manifestations and treatment of a new corona virus infection COVID-19. The authors have carried out a comparative analysis of the infection caused by the virus SARS-CoV-2, with severe respiratory syndrome (ТОРС/SARS), caused by the virus SARS-CoV and Middle East respiratory syndrome caused by MERS-CoV. The authors described epidemiological and clinical peculiarities of COVID-19 associated with a high virus affinity to the molecule of agiotensin converting enzyme of the 2nd type in the human pulmonary tissue.
Key words:COVID-19, corona virus, respiratory distress-syndrome
Характеристика коронавирусов (CoV) Коронавирусы (CoV - семейство Coronaviridae, род Coronavirus) - это большое семейство сложных вирусов, имеющих несегментированную одноцепочечную положительную (+) РНК. Эти вирусы поражают животных и человека, вызывают респираторные, гастроинтестинальные, печеночные и неврологические расстройства. Термин "коронавирус" был предложен в 1968 году и отражает морфологию вириона. При электронной микроскопии эти сферические частицы размером 100-150 нм окружены булавовидными выступами (пепломерами), напоминающими солнечную корону. Геном коронавирусов самый крупный среди вирусных РНК (молекулярная масса до 6×106 Да) [5]. Поверхностный S-протеин коронавируса выполняет функции рецептора (фактора слияния с клеткой) и содержит два субдомена S1 и S2. Вирус проникает в клетку после рецептор-зависимого слияния вирионной и клеточных мембран. Весь цикл репродукции коронавирусов происходит в цитоплазме клетки. Ядро клетки остается интактным на протяжении всего процесса [4]. После проникновения коронавируса в клетку, репликация РНК проходит иначе, чем у других (+) РНК-вирусов. Отсутствуют два "классических" этапа - синтез полипротеина и его расщепление на зрелые (структурные и неструктурные) вирусные белки. Коронавирус синтезирует РНК-зависимую РНК-полимеразу; полимераза, связываясь с определенным сайтом вирусной РНК, обеспечивает образование субгеномных дискретных мРНК для каждого из вирусных белков. Подобный механизм является специфическим для коронавирусов [6]. Образование суперкапсида и сборка вириона происходят внутри эндоплазматической сети. Зрелые вирусные частички выводятся из клетки в составе везикул по каналам эндоплазматической сети и аппарата Гольджи [108]. Зараженная клетка гибнет в результате цитолиза. При этом может формироваться кратковременный иммунитет барьерных тканей (слизистых, кожи), так называемый "мукозальный" иммунитет, который реализуется через "мукозо-ассоциированную лимфоидную ткань" (mucosa - associated lymphoid tissue - MAST). Коронавирусы у человека были впервые выделены в 1965 году D. Tyrrell и M. Bynoe. В 2002 году в провинции Гуандун КНР был зарегистрирован коронавирус тяжелого острого респираторного синдрома (ТОРС) (severe acute respiratory syndrome (SARS)) SARS-CoV, который инфицировал более 8 000 человек. Заболевание характеризовалось высокой летальностью (около 10 %). В 2003 году распространение заболевания прекратилось, и в дальнейшем вирус этого типа не выявлялся. Второй эпидемиологически значимый коронавирус, известный как коронавирус Ближневосточного респираторного синдрома (MERS-CoV), был обнаружен в 2012 году и также вызывал пневмонию у пациентов. С 2012 года было описано около 2 500 случаев этого заболевания, преимущественно в странах Ближнего Востока. Заболевание характеризовалось крайне высокой летальностью (35-37 %) [31]. Обе инфекции имели зоонозное происхождение и исходно были связаны с вирусами летучих мышей. Промежуточным хозяином SARS-CoV считают циветту, а промежуточным хозяином MERS-CoV являются верблюды [12]. Высокий уровень летальности этих заболеваний позволил говорить о коронавирусах, как о крайне опасных патогенах человека [91]. В декабре 2019 года в городе Ухань провинции Хубэй КНР органы здравоохранения Китая выявили серию случаев пневмонии неизвестной этиологии. Заболевание характеризовалось лихорадкой, тяжелым респираторным дистресс-синдромом, лимфопенией и неэффективностью антибиотикотерапии. У заболевших был выявлен бета-коронавирус, названный ВОЗ 12 января 2020 года "2019 новый коронавирус" (2019-nCoV). Заболевание, вызванное этим вирусом, получило официальное название ВОЗ "коронавирусная болезнь 2019" (COVID-19). Группа по исследованию коронавируса Международного комитета 11 февраля 2020 года переименовала новый вирус в SARS-CoV-2 [109]. SARS-CoV-2 имеет 79 % идентичности структуры с SARS-CoV - вирусом, который в 2002-2003 году вызвал вспышку заболевания в провинции Гуандун КНР [98]. Выявлена 91 % идентичность возбудителя COVID-19 и SARS-CoV в S2-субдомене поверхностного протеина, в то время как S1-субдомен, определяющий взаимодействие с клетками-мишенями, имеет лишь 51 % идентичности [88]. Еще большее сходство (96 % идентичности) выявлено у вируса SARS-CoV-2 с коронавирусом летучей мыши RaTG13-2013 [91]. Zhang L. и соавт. [107] анализировали генотип вируса SARS-CoV-2, выделенного у пациентов из разных провинций, и обнаружили, что вирус подвержен существенной мутации, хотя степень его диверсификации меньше, чем вируса "птичьего" гриппа H7N9. Tang X. и соавт. (2020), на основании популяционного генетического анализа выявили 2 основных типа вируса SARS-CoV-2: L-тип (~ 70 %) и S-тип (~ 30 %). L-тип, эволюционировал из более древнего S-типа, став более агрессивным и контагиозным, за счет более высокой степени трансмиссии и возрастания темпов репликации [84]. Эпидемиология COVID-19 Основным путем передачи заболевания считают воздушно-капельный путь, также существенную роль может играть воздушно-пылевой и контактный путь передачи [49]. SARS-CoV-2, кроме трахео-бронхиальных секретов, выявляется в фекалиях пациентов, что указывает на его репликацию в пищеварительном тракте и, соответственно, возможность фекально-орального пути передачи инфекции. Хотя более вероятен путь аэрозольной передачи вируссодержащих микрокапель испражнений больного [45]. Передача инфекции происходит, преимущественно, между членами семьи и близкими друзьями, тесно контактировавшими с больными или лицами, находящимися в инкубационном периоде заболевания. Инфицирование медицинских работников, взаимодействующих с больными COVID-19, описано в 3,8 % случаев. Индекс контагиозности COVID-19 (количество вторичных случаев в абсолютно восприимчивой популяции, вызванных контактом с инфекцией), по данным ВОЗ, составляет 1,4-2,5 [68]. В обзоре Wu D. и соавт. (2020) приводятся показатели индекса контагиозности от 2 до 6,47 [97]. Для сравнения: индекс контагиозности сезонного гриппа составляет 1,19-1,37, индекс контагиозности кори - 12-18 [14]. Вместе с тем, отмечено, что показатель индекса контагиозности COVID-19 может существенно варьировать в разных популяциях. По данным Li Q. и соавт. (2020), средний инкубационный период COVID-19 составляет 5,2 дней. В 95 % случаев инкубационный период заболевания не превышает 12,5 дней [54]. В то же время Guan W.J. и соавт. (2020), проанализировав истории болезни 1 099 пациентов, сообщают о среднем инкубационном периоде заболевания 3,0 дня, отмечая при этом возможную длительность инкубационного периода до 24 дней [39, 40]. Описано "бессимптомное" носительство вируса [18]. Вместе с тем, в случаях "бессимптомного" носительства, тщательный опрос пациента нередко позволяет выявить слабую симптоматику в виде небольшой миалгии или слабости. У 10-летнего мальчика с "бессимптомным" носительством при компьютерной томографии была обнаружена инфильтрация в легких. "Бессимптомное" течение заболевания играет наиболее важную, критическую роль в распространении инфекции [109]. Сведения о распространенности COVID-19 отличаются значительной вариабельностью. В "поле зрения" врачей попадают, преимущественно, пациенты с наличием выраженной симптоматики, поэтому полученные статистические данные касаются среднетяжелого и тяжелого течения заболевания. Наличие легких и бессимптомных форм позволяет говорить о том, что реальная заболеваемость COVID-19 может в десятки раз превышать официальную статистику. Патогенез заболевания Общий патогенез COVID-19 включает проникновение вируса через слизистые носовой полости, гортани и других воздухоносных путей. Последующая виремия обусловлена поступлением вируса в кровь через легочную ткань. Для коронавируса тяжелого острого респираторного синдрома SARS-CoV был установлен рецептор в нижних дыхательных путях человека, которым оказалась белковая молекула - ангиотензин-превращающий фермент 2-го типа (АПФ2) [48]. SARS-CoV-2 - возбудитель COVID-19 - имеет сходный механизм действия на клетки [66, 102]. Более того, SARS-CoV-2 имеет большую аффинность к АПФ2, чем SARS-CoV [84]. Связывание S1-протеина коронавируса и АПФ2 является ключевым этапом входа вируса в клетку [87]. Представленность молекул АПФ2 в различных тканях может определять тропность вируса к органам человека (рис. 1). ![]() Рис. 1. Распределение АПФ2 в тканях человека: легкие, сердце, почки, тонкий кишечник, головной мозг и яички имеют высокую экспрессию АПФ2 и, соответственно, являются потенциальными органами-мишенями для SARS-CoV-2 (по Baig A.M. и соавт., 2020) Генетические особенности экспрессии АПФ2 могут определять характер течения COVID-19. Высокая экспрессия АПФ2 была выявлена у мужчин-монголоидов [16], что, возможно, определило высокую заболеваемость мужского населения в очагах заражения в КНР. АПФ2 был описан Donoghue М. и соавт. в 2000 году, как молекула, экспрессируемая, преимущественно, эндотелием. АПФ2 связан с плазмолеммой (является трансмембранным протеином), но может переходить в растворимую форму в биологических жидкостях [33]. Ангиотензин-превращающий фермент играет ключевую роль в ренин-ангиотензиновой системе, гидролизуя декапептид ангиотензин I до октопептида ангиотензин II. В то время как АПФ2 катализирует превращение ангиотензина I в ангиотензин (1-9), путем отщепления С-терминальной аминокислоты лейцин. Образующийся ангиотензин (1-9) является конкурентным антагонистом ангиотензин-превращающего фермента, что способно снизить образование ангиотензина II [33]. Кроме того, АПФ2 расщепляет ангиотензин II до ангиотензина (1-7). Ангиотензин (1-7) описан как важнейший компонент ренин-ангиотензиновой системы, обладающий вазодилатирующим, антитромботическим, антипролиферативным эффектами [80]. Таким образом, АПФ2 выполняет роль негативного регулятора ренин-ангиотензиновой системы. Ангиотензин-превращающий фермент экспрессируется на всех капиллярах малого круга кровообращения - легочные капилляры являются важным источником ангиотензина II. Массивный синтез ангиотензина II в легких при нарушении регуляторной оси "АПФ2-ангиотензин (1-7)" может привести к резкой вазоконстрикции, вентиляционно-перфузионной диспропорции и выраженной тканевой гипоксии. Снижение концентрации ангиотензина (1-7) при COVID-19, за счет блокирующего действия вируса на активность АПФ2, может быть важным патогенетическим звеном тяжелого течения заболевания. Косвенным подтверждением этого являются результаты экспериментальных исследований. У экспериментальных крыс вызывали острый респираторный дистресс-синдром интратрахеальным введением бактериальных липополисахаридов с последующей механической вентиляцией легких. Было выявлено значительное снижение активности АПФ2, повышение уровня ангиотензина II и снижение концентрации ангиотензина (1-7) в бронхоальвеолярном лаваже подопытных животных. Введение животным резистентной к протеазам циклической формы ангиотензина (1-7) существенно снижало активность воспаления, степень повреждения легочной ткани и улучшало оксигенацию организма [95]. Также, для понимания механизмов влияния SARS-CoV-2 на дыхательную систему важен факт того, что АПФ2 преимущественно экспрессируется альвеолоцитами 2 типа и клетками Клара в бронхиолах [93]. Следует отметить, что продуцирующие сурфактант альвеолоциты 2-го типа составляют 83 % всех экспрессирующих АПФ2 клеток организма человека. Специфическое повреждающее воздействие SARS-CoV-2 на эти клетки способно привести к нарушению продукции сурфактанта и, соответственно, нарушению функции легких. Гибель клеток Клара может обусловить поражение бронхиол. Наличие экспрессии АПФ2 на нейронах и глии головного мозга определяет потенциальную нейротропность SARS-CoV-2 [13]. Ранее была показана способность коронавирусов вызывать гибель нейронов [63]. Этим, по-видимому, объясняется нарушение работы обонятельных нейронов, находящихся в слизистой носовой полости, при COVID-19. Исследования Mao L. и соавт. (2020) выявили, что 36,4 % пациентов с COVID-19 имеют неврологические проявления [61]. Показана важная роль регуляторной оси "АПФ2 - ангиотензин (1-7)" в подавлении острого и хронического воспаления. Ангиотензин (1-7) уменьшает миграцию лейкоцитов и синтез провоспалительных цитокинов TNF-α, IFN-γ, IL-1β , IL-6, снижает фиброгенез. При этом, образование противовоспалительного цитокина IL-10 возрастает. Блокада коронавирусами АПФ2 способна усилить воспалительный процесс в легочной ткани, вызвать фиброз легких [80]. Индукция "цитокинового шторма" - ключевой пункт патогенеза тяжелого течения COVID-19 (рис. 2). ![]() Рис. 2. Патогенез COVID-19 (по Sarzi-Puttini P. и соавт., 2020) Примечание. 1 - SARS-COV2 входит в клетку, реплицируется и высвобождается; 2 - происходит презентация антигена (АПК - антиген-презентирующая клетка), участвует главный комплекс гистосовместимости 1 типа (MCH1). При этом стимулируется как клеточный (3), так и гуморальный (4) иммунитет. Известно, что вирус SARS-CoV индуцирует образование чрезмерно высокого уровня антивирусных цитокинов, особенно интерферонов 1-го типа, что сочетается со снижением количества Т-лимфоцитов. Такие хемокины, как IP-10 и MCP-1, могут играть ключевую роль в поражении легочной ткани, так как приводят к накоплению иммунных клеток в ткани легких. Тяжесть симптоматики SARS тесно коррелирует с уровнем IL-6; несколько меньшая степень корреляции выявлена с уровнем TNF-?. Заболевание сопровождается лимфопенией, причина которой не ясна. Имеются указания как на прямое повреждающее влияние вируса на лимфоциты, так и на перераспределение клеток хемотаксисом и массивной инфильтрацией легких CD8+ T-лимфоцитами. Кроме того, показано, что цитокины, продуцируемые при инфекции SARS-CoV, особенно IL-6 и IL-8, способны вызывать дисфункцию Т-лимфоцитов, нарушая их взаимодействие с дендритными клетками и макрофагами и снижая эффективность иммунного ответа. Таким образом, поражение легких при инфекции SARS-CoV в большей степени вызывается неадекватностью иммунного ответа, чем собственно вирусом [78]. Наблюдение за пациентами, перенесшими острый респираторный синдром SARS-CoV, в течение 1 года выявило, что количество CD8+ T-лимфоцитов восстановилось до уровня нормы в течение 2-3 месяцев после выздоровления; восстановление CD4+ T-клеток памяти произошло в течение года. Вместе с тем, общее количество Т-лимфоцитов, CD3+ и CD4+ клеток оставалось ниже уровня контроля [101]. Цитокиновая дизрегуляция выражена и при COVID-19. Huang C. и соавт. (2020) нашли, что уровни в плазме крови IL-2, IL-7, IL-10, IP-10 и TNF-? коррелировали с тяжестью заболевания (более высокий уровень этих цитокинов имел место у пациентов, требующих интенсивной терапии) [46]. Diao B. и соавт. (2020) выявили, что пациенты с тяжелым течением COVID-19 отличались малым количеством CD4+ и CD8+ T-лимфоцитов и что плазменные концентрации TNF-? и IL-6 имели отрицательную корреляцию с общим количеством Т-лимфоцитов, а также с количеством CD4+ и CD8+ клеток [32]. Сниженное количество В-лимфоцитов при заболевании определяет дефицит иммуноглобулинов [89] и, как следствие, недостаточную активацию механизмов специфического гуморального иммунитета. Возможно несколько причин резкого повышения количества провоспалительных цитокинов у пациентов с COVID-19. Критическую роль в этом явлении может иметь пироптоз: клеточная гибель из-за быстрой репликации вируса в клетке с массивным высвобождением медиаторов воспаления. Кроме того, ускорить скопление макрофагов в легких с развитием мощного воспалительного ответа способны антитела против S-протеина вируса (anti-S-IgG) [78]. Хотя легкие являются основным органом-мишенью COVID-19, было показано вовлечение в патологический процесс других жизненно важных органов, таких как сердце, печень, почки, кишечник. Нарушения работы печени значительно усиливаются после этой инфекции [105]. Xu Z. и соавт. [103] сообщили о стеатозе и повреждении гепатоцитов в биоптатах печени пациентов с COVID-19. Cheng Y. и соавт. [21] выявили высокую частоту острого поражения почек при COVID-19. В целом, ведущая роль ренин-ангиотензиновой системы в патогенезе тяжелого респираторного дистресс-синдрома определяет возможность выявления пациентов группы риска, имеющих вследствие генетического полиморфизма высокий уровень ангиотензина II, а также перспективность использования рекомбинантного АПФ2 при тяжелом течении заболевания [83, 106]. Клиническая картина COVID-19 Средний возраст заболевших, по данным разных авторов, составлял от 47 до 56 лет; до 15 % всех пациентов - лица старше 65 лет; преобладали мужчины - 51,4-73,2 %. Симптомы COVID-19 у детей встречались редко. Дети до 14 лет составляли менее 1 % [39]. В Южной Корее только 6,3 % из примерно 8 000 случаев были пациенты младше 20 лет [38]. Наиболее частым коморбидным фоном заболевания являлась гипертония - от 31,2 % [89] до 80 % [73]. Chen N. и соавт. [20] указывали на 40,4 % частоту сердечно-сосудистых и цереброваскулярных заболеваний у пациентов с COVID-19. Также исследователи отмечали высокую частоту сахарного диабета - от 10 % до 20 % [39, 89]. При этом, доля предшествующих хронических заболеваний легких, по данным китайских исследователей, составляла от 1 [20] до 2,9 % [89], что не превышало среднестатистическую распространенность этой патологии в Китае. Клинические проявления инфекции очень вариабельны: от легких ("бессимптомных") форм до тяжелого "молниеносного" течения [97]. Исследование около 44 000 пациентов в Китае показало, что 81 % заболевших имел легкую и среднетяжелую форму заболевания, у 14 % - наблюдалось тяжелое течение, и у около 5 % пациентов развивалось критическое состояние, требующее интенсивной терапии [91]. В качестве наиболее частых клинических проявлений COVID-19 описывали лихорадку (88,7 %), кашель (67,8 %), слабость и утомляемость (38,1 %), отхождение мокроты (33,4 %), одышку (18,6 %), боль в горле (13,9 %), головную боль (13,6 %), миалгию (11 %), спутанность сознания (9 %). Кроме того, нередко встречались гастроинтестинальные проявления: диарея (3,8 %) и рвота (5,0 %) [39, 40, 46]. Регистрировалось также чувство "тяжести в груди" и диспноэ [30]. Авторы отмечали крайне редкое появление симптомов поражения верхних дыхательных путей, таких как насморк. Holshue M.I. и соавт. [45] описывали динамику клинической картины первых случаев заболевания, как начало с респираторных симптомов (сухой кашель) с последующим абдоминальным дискомфортом, тошнотой, рвотой, диареей. Отсутствие лихорадки примерно у 12 % пациентов с COVID-19 существенно отличало это заболевание от тяжелого острого респираторного синдрома, вызванного SARS-CoV, и Ближневосточного респираторного синдрома, вызванного MERS-CoV, при которых доля пациентов без повышенной температуры составляла только 1 % и 2 %, соответственно [85]. В отличие от инфекций SARS-CoV и MERS-CoV, при COVID-19 гораздо реже наблюдался такой системный симптом, как озноб [58]. При физикальном исследовании, патологическая симптоматика выявлялась только при тяжелом течении COVID-19: отмечалась одышка, влажные хрипы в легких, притупление перкуторного тона, ослабление дыхательных шумов, усиленное или ослабленное голосовое дрожание [97]. В целом, диагностика заболевания затруднена неспецифичностью симптомов, сходных с симптоматикой любых респираторных вирусных сезонных инфекций, и существенным отличием клинических проявлений различных форм заболевания. Lai C.C. и соавт. [51] выделили три степени (формы) инфекционного процесса:
Некоторые показатели, характеризующие особенности клинической картины при разных формах течения COVID-19, приведены в таблице [51]. По мнению всех исследователей, у пожилых пациентов с наличием сопутствующей патологии (гипертония и другие сердечно-сосудистые заболевания, ХОБЛ, сахарный диабет) течение заболевания было более тяжелым, нередко с развитием острого респираторного дистресс-синдрома (ОРДС), септического шока, трудно коррегируемого метаболического ацидоза и коагуляционной дисфункции [46]. По данным Lake M.A. (2020), средний промежуток времени от появления симптомов заболевания до госпитализации составлял 7 дней. 32 % госпитализированных нуждались в интенсивном лечении с ИВЛ [52]. По данным Wang D., et al. (2020), средний период от начала заболевания до развития ОРДС составлял около 8 суток. Ухудшение состояния пациентов коррелирует с возрастанием в период от 7 до 14 суток заболевания содержания в крови провоспалительного цитокина IL-6 [89]. Средний промежуток времени от появления симптомов заболевания до необходимости ИВЛ и летального исхода составлял 11 и 23,7 дней, соответственно [51].
Клиническая картина COVID-19 у детей имеет особенности. В январе 2020 г. было выявлено более 2 000 детей разного возраста с достоверно подтвержденной инфекцией COVID-19. У 13 % отмечалось бессимптомное течение, у 87 % выявлялись симптомы (в том числе, у 5 % - дыхательные нарушения, у 0,6 - ОРДС). Вместе с тем, дети, преимущественно, являются носителями или заболевают в легкой форме. Отмечается, что для детей характерна репликация вируса в ЖКТ и длительное выделение со стулом, что увеличивает распространение заболевания в популяции [27]. Результаты функциональной диагностики и лабораторного обследования При течении COVID-19, как острого респираторного заболевания, только 14,7 % пациентов имели рентгенологические изменения в легких. Вместе с тем, при компьютерной томографии (КТ) грудной клетки у 76,4 % этих пациентов выявляли патологию в виде эффекта "матового стекла" и изменений в интерстиции. Эти изменения в 50,1 % случаев были двусторонними [39]. При прогрессировании заболевания на КТ регистрировалось усиление и распространение эффекта "матового стекла", появление фиброзных полос и солидных узлов [51]. Необходимо отметить, что указанные изменения неспецифичны и могут встречаться при вирусных пневмониях иной этиологии. Фокальные участки снижения воздушности альвеол по типу "матового стекла" (туманное снижение прозрачности легочной ткани с дифференцируемым рисунком сосудов и бронхов) обусловлены частичным снижением их воздушности (транссудативной и экссудативной природы), спадением и утолщением стенок альвеол. При пневмонии, ассоциированной с инфекцией COVID-19, отмечают быстрое этапное прогрессирование патологического процесса: от единичных субплевральных фокусов, разбросанных с двух сторон, их веерообразной консолидации до полного отсутствия прозрачности легочной ткани (симптом "белого" легкого) на критической стадии болезни. Из изменений в результатах лабораторных исследований наиболее часто встречалась лейкопения - около 63 % случаев [46]. Лимфоцитопения наблюдалась у 82,1 % пациентов [97]. Нередко описывается тромбоцитопения. Следует отметить, что сниженное количество тромбоцитов выявлялось примерно в 45 % случаев инфекций SARS-CoV и MERS-CoV. Описаны небольшое повышение уровня ферментов крови - АСТ и АЛТ, а также мышечных маркеров креатинкиназы и лактатдегидрогеназы [45]. Wang D. и соавт. (2020) cообщили об удлиненном протромбиновом времени примерно у 58 % пациентов [89]. Пациенты с тяжелым течением заболевания, находящиеся на ИВЛ, имели повышенный протромбин и D-димер. Повышенный уровень тропонина I (hypersensitive-troponin I (hs-cTnI)) также регистрировался у некоторых пациентов, что может свидетельствовать о поражении миокарда. Уровень сывороточного прокальцитонина ?0,5 ng/mL был выявлен в 6,1-13,7 % случаев [51]. Наиболее тяжелые случаи с летальным исходом характеризовались увеличением количества нейтрофилов, высоким уровнем D-димера и азотемией [89]. При тяжелом течении заболевания у пациентов, находящихся в палатах интенсивной терапии, выявляли в плазме крови высокий уровень IL-2, IL-7, IL-10 и TNF-? [46]. Специфическая лабораторная диагностика инфекции, вызванной SARS-CoV-2, включает детекцию РНК вируса методом ПЦР в реальном времени в биологических материалах (назальный секрет, кровь, моча). Этот метод относится к ранним методам диагностики. Максимальное количество вируса в назальном секрете наблюдается на второй - третий день заболевания. Осложнения и летальность COVID-19 Осложнение COVID-19 включают развитие ОРДС (29 %) и вторичных бактериальных инфекций (10 %) [52]. Также имеются указания на инфекционно-токсический шок, острое поражение почек, дисфункцию печени [46]. Huang C., et al. [46] сообщают, что нередко отмечалось острое поражение сердца, что предполагает тропность вируса к сердечной мышце и существенный кардиальный риск у пациентов. Первая волна инфекции в городе Ухань провинции Хубэй КНР включала 71 333 случая заболевания и вызвала 1 775 смертей, несмотря на то, что в большинстве случаев заболевание протекало в среднетяжелой форме. Среди 44 672 лабораторно-подтвержденных случаев, примерно 5 % имели тяжелое течение, и половина этих случаев закончилась летальным исходом [85]. В среднем, по данным разных исследователей, летальность от COVID-19 составила менее 4 %, что существенно меньше летальности при заболеваниях вызванных коронавирусами SARS-CoV (около 10 %) and MERS-CoV (около 37 %) [19]. Предварительные исследования выявили летальность от пневмонии, вызванной SARS-CoV-2 от 11 до 15 % [46], однако, более поздние исследования свидетельствовали о летальности в пределах 1,4-4,3 % [89]. ВОЗ указывает на летальность от COVID-19 около 2,9 % [92]. Существенные отличия в показателях летальности, приводимых в разных исследованиях, имеют, по-видимому, методологические причины. Анализ летальных случаев выявил, что у погибших пожилых пациентов (старше 70 лет) имел место более короткий период между первыми признаками заболевания и летальным исходом (около 11 дней), по сравнению с летальными случаями у более молодых пациентов (около 20 дней) [89]. Дыхательная недостаточность как осложнение инфекции COVID-19 Новая коронавирусная инфекция наряду с испанским гриппом, тяжелым острым респираторным синдромом (SARS-CoV), Ближневосточным респираторным синдромом, гриппом A (H1N1) относится к тем формам респираторной вирусной инфекции, которые вызывают дыхательную недостаточность [8, 11, 67, 69]. По данным Yang X. и соавт., из 710 пациентов с подтвержденной SARS-CoV-2 пневмонией, 52 пациента находились в критическом состоянии в результате дыхательной недостаточности гипоксического типа. При этом медиана времени от начала заболевания до значительного ухудшения состояния и перевода в отделение интенсивной терапии составила 9,5 дней. У 67 % этих больных была картина ОРДС, 71 % больных находился на искусственной вентиляции легких (ИВЛ). 28-дневная летальность среди этих больных составила 32 %. Авторы отметили сходство течения острой дыхательной недостаточности при пневмонии SARS-CoV-2 с другими тяжелыми формами коронавирусной инфекции: тяжелым острым респираторным синдромом (SARS-Cov) и Ближневосточным респираторным синдромом (MERS), но отметили более высокую летальность в своей группе больных [110]. Chen T. и соавт. сообщили о наличии ОРДС в 100 % случаев среди 113 умерших больных [20]. Wu Z. и McGoogan J.M. в своем исследовании проанализировали 44 672 случая подтвержденной инфекции COVID-19, по данным Китайского центра по контролю и профилактике заболеваний, и показали, что 41 % всех госпитализированных пациентов и более 70 % пациентов с тяжелыми течением инфекции имели признаки дыхательной недостаточности. При этом инвазивная и неинвазивная вентиляция легких была применена в 38,7 % случаев тяжелого течения инфекции, 5 больным (2,9 %) была применена экстракорпоральная мембранная оксигенация [99]. В большинстве публикаций, посвященных COVID-19, факторами риска развития дыхательной недостаточности авторы указывали пожилой возраст (>60 лет), мужской пол и наличие сопутствующих заболеваний, таких как сахарный диабет, злокачественные новообразования и иммунодефицит [22, 25, 29, 40]. Ухудшение состояния пациента может происходить очень быстро: большая часть больных на момент поступления в реанимацию имели абсолютные показания для инвазивной вентиляции легких вследствие ОРДС тяжелой степени, а ряд больных поступали фактически в состоянии клинической смерти [15, 28, 44, 56, 57, 76, 77]. Wujtewicz M.A. и соавторы указывали критерии для своевременного распознавания пневмонии при COVID-19, как потенциальной причины тяжелой дыхательной недостаточности: сочетание лихорадки с одышкой (частота дыхания более 30 в мин.) или со снижением показателя SpO2 менее 93 % при дыхании атмосферным воздухом [100]. Также ряд авторов [26, 86, 100], обращая внимание на то, что ОРДС при COVID-19 не имел каких-либо специфических отличий от ОРДС другого происхождения, указывали на необходимость своевременного распознавания следующих критериев:
COVID-19 в акушерской и неонатологической практике Беременные женщины подвержены большему риску заболеваемости и смертности от таких респираторных инфекций, как грипп и SARS-CoV, и должны рассматриваться в качестве группы риска для COVID-19. В работе Lan L. и соавт, где описано 38 беременных, больных COVID-19, не наблюдалось ни одного случая внутриутробного заражения и ни одного случая материнской смерти [53]. Вместе с тем, по данным [17], указано на возможность трансплацентарного пути передачи инфекции. Описано выявление нуклеиновой кислоты вируса в носоглотке новорожденных детей в возрасте 30 часов, матери которых имели диагностированную коронавирусную пневмонию. У беременных с COVID-19 отмечалось увеличение частоты преждевременных родов и кесаревых сечений, обусловленных нарушениями при кардиотокографии. Беременность и роды не усугубляли течение болезни. Некоторые матери выздоравливали до родов [50]. Родоразрешение в активной фазе COVID-19 сопряжено с увеличением показателя материнской летальности и количества осложнений: утяжелением основного заболевания, неконтролируемым синдромом системного воспалительного ответа, синдромом диссеминированного внутрисосудистого свертывания крови, развитием и прогрессированием дыхательной недостаточности, возникновением массивных акушерских кровотечений, интранатальной гибелью плода, послеродовых гнойно-септических осложнений. При невозможности устранения гипоксии, развитии альвеолярного отека легких, а также при рефрактерном септическом шоке по жизненным показаниям в интересах матери показано досрочное родоразрешение путем операции кесарева сечения с проведением всех необходимых мероприятий по профилактике коагулопатического и гипотонического акушерского кровотечения. В случае развития спонтанной родовой деятельности в разгар заболевания и пневмонии роды предпочтительно вести через естественные родовые пути под мониторным контролем состояния матери и плода [2]. При наличии у матери подозрительных симптомов или подтвержденного COVID-19, рекомендует оставлять первородную смазку у новорожденного в течение первых 24 часов жизни, поскольку она содержит антимикробные пептиды [64]. Следует обсудить с матерью возможные риски и пользу временного разделения с ребенком. Дети, рожденные от матерей с подтвержденным COVID-19, должны также считаться пациентами с подозрением на COVID-19, с соответствующими выводами в отношении наблюдения и изоляции [70]. Показана возможность передачи коронавирусной инфекции новорожденным и тяжелое течение болезни у таких детей [104]. Сотрудники Детской больницы города Ухань представили отчет о 33 случаях ведения родов у больных COVID-19 и постнатального ухода. Наличие возбудителя COVID-19 с развитием пневмонии выявили у трех детей (9,09 %). Инфицированные дети появились на свет с помощью кесарева сечения и симптомы возникли лишь через два дня после рождения. Это может указывать на внутрибольничную инфекцию. Таким образом, COVID-19 может тяжело, с лихорадкой и пневмонией, протекать даже у новорожденных пациентов. Неизвестно, может ли вирус передаваться с молоком при кормлении грудью. В единственной работе по этому вопросу вирус не был обнаружен в молоке ни у одной из 6 пациенток [94]. Однако, вероятно воздушно-капельное заражение при близком контакте во время кормления. Некоторые аспекты лечения COVID-19 COVID-19 течет как инфекция с самопроизвольным излечением примерно у 80 % заболевших [111]. Вместе с тем, около 20 % пациентов нуждаются в активной медицинской помощи. Специфическое лечение при инфекции, вызванной SARS-CoV-2, в настоящее время, отсутствует. Эффективность антивирусной терапии остается недоказанной, имеется широкий спектр мнений по этому вопросу. Holshue M.L., et al. (2020) сообщают об использовании нуклеотидного аналога ремдесивира с обнадеживающими результатами [45]. Ранее этот препарат использовался при лечении лихорадки Эбола и показал свою эффективность в предотвращении инфекции, вызванной MERS-CoV у обезьян. Среди противовирусных препаратов, которые могут быть использованы для дальнейших клинических исследований, рибавирин, ингибиторы протеаз лопинавир и ритонавир, интерфероны, арбидол и др. Согласно "Временным методическим рекомендациям: профилактика, диагностика и лечение новой короновирусной инфекции (COVID-19) версия 4 (27.03.2020) МЗ РФ" рекомендованы следующие подходы к лечению пациентов. При легких формах (поражение только верхних отделов дыхательных путей) у пациентов младше 60 лет без сопутствующих хронических заболеваний используют рекомбинантный интерферон-альфа по 3 капли в каждый носовой ход 5 раз в день в течение 5 дней, разовая доза
Зарегистрированные в XXI веке вирусные респираторные инфекции человека (тяжелый острый респираторный синдром SARS-CoV, Ближневосточный респираторный синдром MERS-CoV и COVID-19) позволяют говорить о коронавирусах, как о крайне опасных патогенах человека. Хотя COVID-19 характеризуется меньшей летальностью, по сравнению с инфекциями, вызванными SARS-CoV и MERS-CoV, заболевание представляет значительную медико-социальную угрозу, вследствие большего индекса контагиозности, длительного инкубационного периода, возможности бессимптомных форм. Роль ангиотензин-превращающего фермента 2-го типа как специфического рецептора для возбудителя COVID-19 определяет высокую тропность вируса SARS-CoV-2 к ткани легких, возможность жизнеугрожающих осложнений из-за тяжелого респираторного дистресс-синдрома, дисрегуляции ренин-ангиотензиновой системы организма, "цитокинового шторма". Среди клинических проявлений заболевания наиболее частыми являются лихорадка, кашель, слабость и утомляемость, отхождение мокроты, одышка, боль в горле, головная боль, миалгия, спутанность сознания. Кроме того, нередко встречаются гастроинтестинальные проявления: диарея и рвота. У пожилых пациентов с наличием сопутствующей патологии (гипертония и другие сердечно-сосудистые заболевания, сахарный диабет) течение заболевания более тяжелое. Подверженность детей COVID-19 значительно меньше. Вместе с тем, описаны случаи тяжелого течения заболевания у новорожденных, родившихся от матерей, инфицированных вирусом SARS-CoV-2. Наиболее частым и тяжелым осложнением COVID-19 является быстрое развитие острого респираторного дистресс-синдрома, требующего интенсивной терапии, нередко с использованием ИВЛ. В настоящее время идет интенсивный поиск лекарственных препаратов и методов кислородной поддержки пациентов с COVID-19. При проведении интенсивной терапии больным с COVID-19, медицинскому персоналу следует неукоснительно соблюдать все меры личной защиты.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||
Адрес: 680000, г. Хабаровск, ул. Муравьева-Амурского, д.35
Телефон: (4212) 76-13-96
© 2010 ДМЖ Электронная версия журнала (ППИ)
«Дальневосточный медицинский журнал» |